

# Advancing the Frontiers of Science through Cyberinfrastructure

Bill Miller
Science Advisor
CISE Division of Advanced Cyberinfrastructure

NSF Cybersecurity Summit, August 19, 2015

# NSF: Advancing Fundamental Science & Engineering (S&E) Research & Education

\$7.3 billion FY 2015 appropriation

funds research, 94% education and related activities













Funds research into STEM education







# Cyberinfrastructure in NSF-Wide FY 2016 Budget Priorities



- Cyberinfrastructure Framework for 21st
   Century Science and Engineering (CIF21)
- Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS)
- NSF Research Traineeship (NRT)
- Risk and Resilience
- Secure and Trustworthy Cyberspace (SaTC)
- Understanding the Brain (UtB)
- Urban Science



# **Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21)**



- Major effort across NSF to coordinate on Cl.
- Embraces an <u>expansive view of CI</u> driven by research priorities and the scientific process.
- Includes investments in:
  - BIGDATA foundational research program
  - Data Infrastructure Building Blocks (DIBBs)
  - Software Infrastructure for Sustained Innovation (SI<sup>2</sup>)
  - Computational and Data-enabled Science and Engineering (CDS&E)
  - Data Science Pilots

### CYBERINFRASTRUCTURE ECOSYSTEM





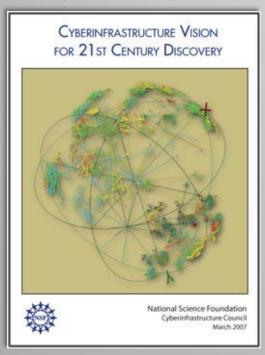


Computational Resources





Networking & Cybersecurity




People & Communities



### NSF's vision for cyberinfrastructure is informed by community input, development, and experience

**Initial Vision** (2007-2010)



NSF-Wide Task Force Reports (2009-2011)



National Academies Study (On going)



Interim Report, Oct 2014
Final Report expected Fall 2015



#### NSF Directorate for Computer and Information Science and Engineering (CISE)

### **Division of Advanced Cyberinfrastructure (ACI)**

Mission: Support advanced cyberinfrastructure to accelerate discovery and innovation across all disciplines

**Division Director:** Irene Qualters

**Division Assistant Director** (Acting): Amy Friedlander

Science Advisor, Integrative Activities: Bill Miller

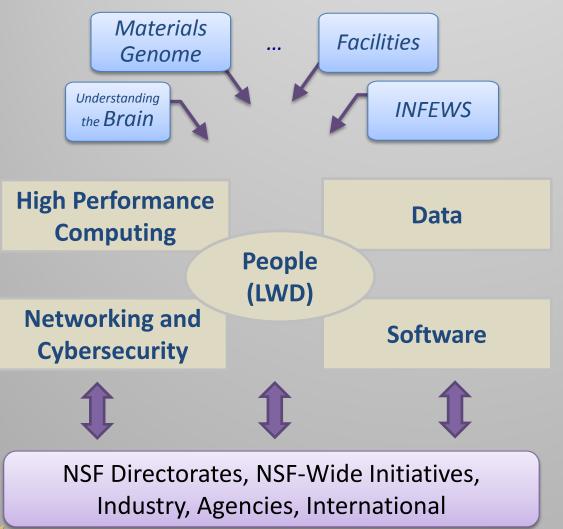
**Data** 

High Performance Computing

Networking & Cybersecurity

**Software** 

Bob Chadduck Amy Walton Bob Chadduck Rudi Eigenmann Fd Walker


Anita Nikolich Kevin Thompson Dan Katz Rajiv Ramnath

**Learning and Workforce Development** 



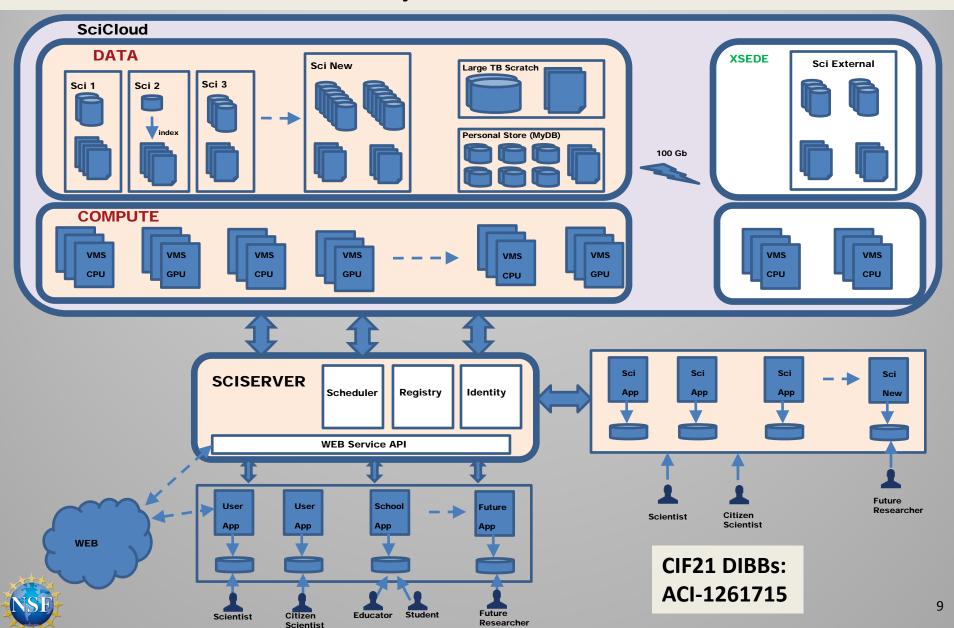
### **ACI: Operational View**

Supporting advance CI to accelerate discovery and innovation

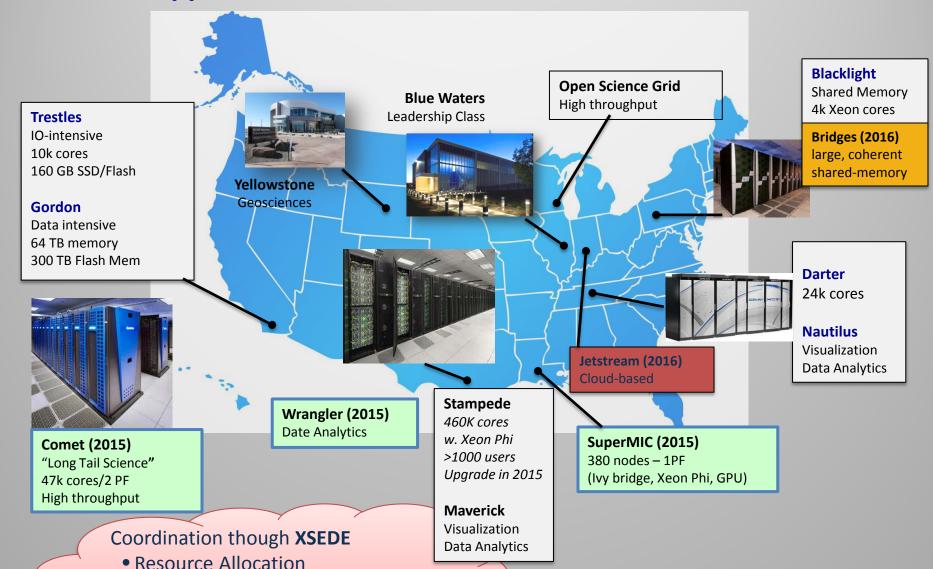


#### Science Drivers

Constant exchange with NSF Directorates, Divisions and Programs


#### **ACI** investments

Convergent investments in technologies and communities to maximize impact


Leadership, Coordination, Partnership



### Long Term Access to Large Scientific Data Sets: From SkyServer to *SciServer*



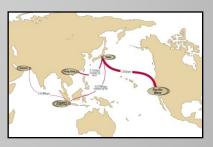
#### **NSF-supported Network of National HPC Resources & Services**

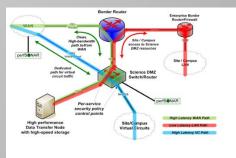


Advanced User Support

Digital Services Architecture

## ACI Networking Programs A fundamental layer underpinning CI


- Campus Cyberinfrastructure Network Infrastructure and Engineering (CC-NIE/CC-IIE)
  - Campus networking upgrade (re-design to science DMZ at campus border and 10/100Gbps) and innovation program. Joint with CISE/CNS
- International R&E Network Connections (IRNC)
  - Enable global scientific collaboration. Joint with NSF International Ofc.
  - Provide network to link U.S. research with peer networks globally
  - Stimulate the deployment and operational understanding of emerging network technology and standards in an international context
















### **ACI Cyber Security Programs**

#### **Secure and Trustworthy Cyberspace (SaTC)**

- Aligns with President's Strategic Plan for the Federal Cybersecurity R&D Program (2011)
- Partners: CISE, SBE, EHR, ENG, and MPS
- Investments:
  - SaTC solicitation: Transition to Practice (TTP).
     Supports development, implementation, and deployment of applied security research into an operational environment.
  - NSF/Intel Partnership on Cyber-Physical
     Systems Security and Privacy (CPS-Security)
  - Education and training in cybersecurity

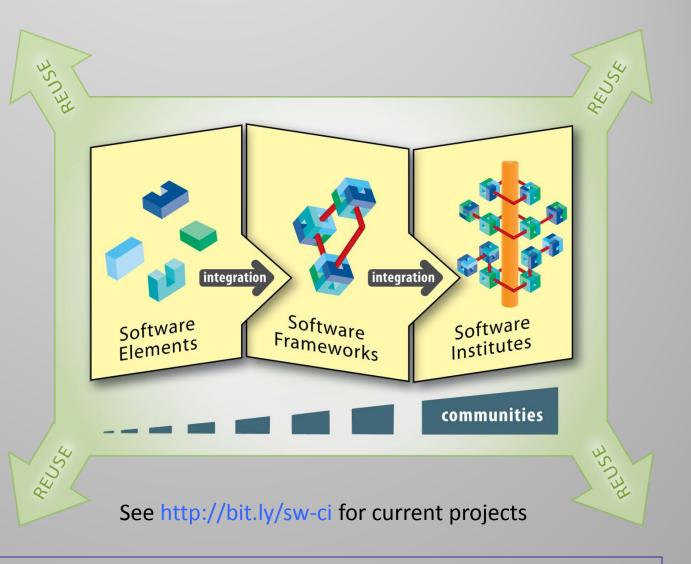


Image Credit: ThinkStock



Image Credit: ThinkStock

#### **Cybersecurity Innovation for Cyberinfrastructure (CICI)**

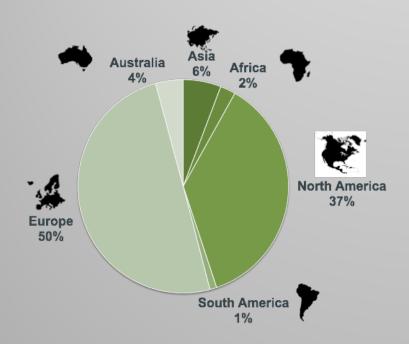

 Supports development/deployment of hardware and software technologies and techniques to protect research CI across every stage of the scientific workflow.

### **NSF Software Infrastructure Projects**

5 rounds of funding, 65 SSEs

4 rounds of funding, 35 SSIs

2 rounds of funding, 14 S2I2 conceptualizations






SSE & SSI – NSF 14-520: **Cross-NSF, all Directorates participating**Next SSEs due Feb 2015; Next SSIs due June 2015



## Research Data Alliance Building a Global Research Data Community



### >2700 Members from 95 countries

#### **Initial Delivery of Products**

- A basic vocabulary of foundational terminology and query tools.
- A data type model and registry ("MIMEtypes" for data) to help tools interpret, display, and process data.
- A persistent identifier type registry to help search engines understand what they are pointing to and retrieving.
- A basic set of machine actionable rules to enhance trust



### **National Strategic Computing Initiative (NSCI)**

**Executive Order, July 29 2015** 

Lead Agencies: DOD, DOE, NSF

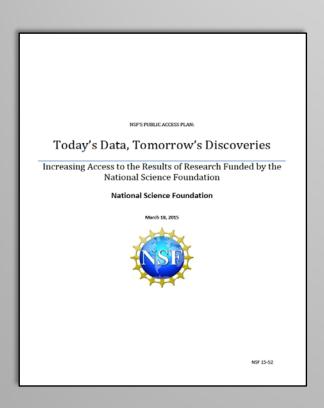
Create a coordinated Federal strategy in High Performance Computing research, development, and deployment to maximize the benefits of HPC for economic competitiveness and scientific discovery.

#### **Strategic Objectives**

1. Accelerate delivery of a capable exascale computing system to deliver approximately 100X performance of current 10PF systems.

NSF foci

- 2. Increase coherence between technology base used for modeling and simulation and that used for data analytic computing.
- 3. Establish, over the next 15 years, a viable path forward for future HPC systems in the post Moore's Law ...
- 4. Increase capacity and capability of an enduring national HPC ecosystem. Use a holistic approach ... networking, workflow, downward scaling, foundational algorithms and software, workforce development.
- 5. Develop enduring public-private partnerships




### CI trends and challenges

- Very dynamic environment sensors, software, & data management/sharing tools are becoming ubiquitous.
- Researchers are more CI-aware: engaging many CI resources to integrate data and make discoveries.
- Federal policies encouraging open access to publications and research data, collaboration, sharing.
- Large scale efforts to develop shared CI resources and standards across fields – e.g. EarthCube, iPlant, ...
- What is "Data Science?"
- Demand for HPC resources for Big Data & Big Models
- Sustainability: workforce, software, hardware
- Who are the data users? Identity or identities?



# Increasing Public Access to Research Results NSF Plan released March 18, 2015



- Requires deposit of journal articles and juried conference papers in the NSF Public Access Repository (NSF-PAR), hosted by DOE/OSTI, within 12 months following initial publication, effective January 2016.
  - Allows for a waiver to the 12-month embargo for publications.
- Retains current Data Management Plan requirements and calls for community engagement to create more consistent management of research data.
- Retains current policies permitting costs of publication and the sharing of research results as a direct cost in the proposal budget.



### **CI Challenge: User-Centric Viewpoint**

Revolution in the scientific workflow: many interfaces to shared services



Large **Facilities** 



Software





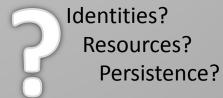
Shared Data/Software **Gateway Resources** 



Collaboration **Networks** 

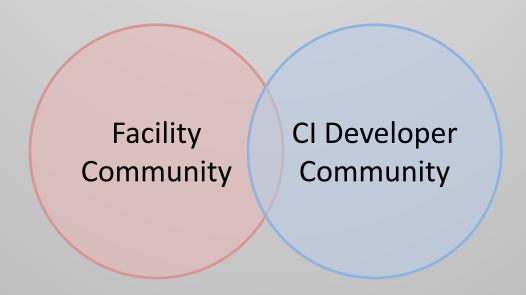





Data








**National Computing** Resources





# NSF Sponsored Community Workshops on Facilities and Cyberinfrastructure \*



First workshop is being planned for early December 2015

Stay Tuned!



### Thanks!



# Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS)

Securing and protecting food, energy and water resources



- Includes investments in:
  - New resource management algorithms, architectures
  - Real-time coordination, communications
  - Robust observation, sensing, inference
  - Large-scale data analysis/management, including modeling, simulation
  - Optimization of complex systems
  - Advancing computational infrastructure
- NSF-wide participation

